Rearranging Series Constructively

نویسندگان

  • Josef Berger
  • Douglas S. Bridges
چکیده

Riemann’s theorems on the rearrangement of absolutely convergent and conditionally convergent series of real numbers are analysed within Bishop-style constructive mathematics. The constructive proof that every rearrangement of an absolutely convergent series has the same sum is relatively straightforward; but the proof that a conditionally convergent series can be rearranged to converge to whatsoever we please is a good deal more delicate in the constructive framework. The work in the paper answers affirmatively a question posed many years ago by Beeson.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibers of Tropicalization

We use functoriality of tropicalization and the geometry of projections of subvarieties of tori to show that the fibers of the tropicalization map are dense in the Zariski topology. For subvarieties of tori over fields of generalized power series, points in each tropical fiber are obtained “constructively” using Kedlaya’s transfinite version of Newton’s method.

متن کامل

F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Power Series Kernels Power Series Kernels

We introduce a class of analytic positive definite multivariate kernels which includes infinite dot product kernels as sometimes used in machine learning, certain new nonlinearly factorizable kernels and a kernel which is closely related to the Gaussian. Each such kernel reproduces in a certain 'native' Hilbert space of multivariate analytic functions. If functions from this space are interpola...

متن کامل

Experimental Evidence for Phonemic Contrasts in a Nonhuman Vocal System

The ability to generate new meaning by rearranging combinations of meaningless sounds is a fundamental component of language. Although animal vocalizations often comprise combinations of meaningless acoustic elements, evidence that rearranging such combinations generates functionally distinct meaning is lacking. Here, we provide evidence for this basic ability in calls of the chestnut-crowned b...

متن کامل

Sequential Continuity of Linear Mappings in Constructive Mathematics

This paper deals, constructively, with two theorems on the sequential continuity of linear mappings. The classical proofs of these theorems use the boundedness of the linear mappings, which is a constructively stronger property than sequential continuity; and constructively inadmissable versions of the Banach-Steinhaus theorem.

متن کامل

Computing on silicon with trigger waves: experiments on CNN-UM chips

In this paper, experimental results on Cellular Neural Network Universal Machine (CNN-UM, [1]-[4]) chips will be presented. These analogic spatio-temporal visual microprocessors make it possible that one can use nonlinear waves as the basic kernels of algorithms solving filtering-reconstruction and/or detectionclassification problems. Showing output results from series of experiments it will be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2009